论文标题
贝叶斯趋势通过近端马尔可夫链蒙特卡洛过滤
Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
论文作者
论文摘要
马尔可夫近端蒙特卡洛(Monte Carlo)是一种新颖的结构,位于贝叶斯计算和凸优化的交集,这有助于普及在贝叶斯统计中使用非不同的先验。但是,现有的近端MCMC公式需要预先指定超参数和正则化参数。在这项工作中,我们通过引入一种新型的新型非不同的先验,称为Epigraph先验,扩展了MCMC近端MCMC的范式。作为概念的证明,我们将趋势过滤放置,最初是一个非参数回归问题,以参数设置,以提供后中间拟合以及可靠的间隔作为不确定性的度量。关键的想法是用其莫罗 - 耶西达(Moreau-Yosida)信封在后密度中替换非平滑项,这使得能够应用基于梯度的MCMC Sampler Hamiltonian Monte Carlo。所提出的方法以数据驱动的方式标识适当的平滑量,从而自动化正则化参数选择。与常规的近端MCMC方法相比,我们的方法主要是免费调整的,在完全贝叶斯框架中同时校准了平均,比例和正则化参数的同时校准。本文的补充材料可在线获得。
Proximal Markov Chain Monte Carlo is a novel construct that lies at the intersection of Bayesian computation and convex optimization, which helped popularize the use of nondifferentiable priors in Bayesian statistics. Existing formulations of proximal MCMC, however, require hyperparameters and regularization parameters to be prespecified. In this work, we extend the paradigm of proximal MCMC through introducing a novel new class of nondifferentiable priors called epigraph priors. As a proof of concept, we place trend filtering, which was originally a nonparametric regression problem, in a parametric setting to provide a posterior median fit along with credible intervals as measures of uncertainty. The key idea is to replace the nonsmooth term in the posterior density with its Moreau-Yosida envelope, which enables the application of the gradient-based MCMC sampler Hamiltonian Monte Carlo. The proposed method identifies the appropriate amount of smoothing in a data-driven way, thereby automating regularization parameter selection. Compared with conventional proximal MCMC methods, our method is mostly tuning free, achieving simultaneous calibration of the mean, scale and regularization parameters in a fully Bayesian framework. Supplementary materials for this article are available online.