论文标题
宏观时间逆转对称性通过交错的旋转摩托车互动破坏
Macroscopic time reversal symmetry breaking by staggered spin-momentum interaction
论文作者
论文摘要
时间逆转(T)对称性破坏是一个基本的物理概念,其基础是广泛的科学技术领域,包括拓扑磁铁,轴心物理学,无耗散霍尔电流或自旋记忆。宏观T-对称破坏的最著名的常规模型是在动量空间中具有各向同性自旋相互作用的流动性Bloch电子的铁磁顺序。另一方面,各向异性电子相互作用已成为相关量子相的结构域,例如T-不变的近神经或非常规的超导体。在这里,我们报告发现具有非常规各向异性的自旋摩肌相互作用的巡回蓝石电子的破碎阶段,其交错的性质导致在动量空间中形成了两个铁磁样谷,并与相反的旋转拼音形成。我们通过得出非相关的单粒子哈密顿模型来定性地描述效果。接下来,我们通过与沿着沿着沿着沿着围栏棋盘的磁性顺序的四个公共抗fiferromagnet MN5SI3确定了通过第一原理电子结构计算的非常规交错的自旋摩肌相互作用。我们表明,交错的自旋摩肌相互作用是由非依赖性的自旋符号来设定的,这些旋转符号以前在自旋相互作用和拓扑准粒子的相对论物理学分类中省略了。我们对抗磁性MN5SI3的表述中自发霍尔效应的测量与我们的理论预测一致。 Bloch电子具有非常规性交错的自旋相互作用,与丰富的低原子数材料,强的自旋连续性和共线性抗磁性秩序无与伦比的无与伦比的可能性兼容,以实现T-对称性破裂的自旋和拓扑量子阶段。
Time-reversal (T) symmetry breaking is a fundamental physics concept underpinning a broad science and technology area, including topological magnets, axion physics, dissipationless Hall currents, or spintronic memories. A best known conventional model of macroscopic T-symmetry breaking is a ferromagnetic order of itinerant Bloch electrons with an isotropic spin interaction in momentum space. Anisotropic electron interactions, on the other hand, have been a domain of correlated quantum phases, such as the T-invariant nematics or unconventional superconductors. Here we report discovery of a broken-T phase of itinerant Bloch electrons with an unconventional anisotropic spin-momentum interaction, whose staggered nature leads to the formation of two ferromagnetic-like valleys in the momentum space with opposite spin splittings. We describe qualitatively the effect by deriving a non-relativistic single-particle Hamiltonian model. Next, we identify the unconventional staggered spin-momentum interaction by first-principles electronic structure calculations in a four-sublattice antiferromagnet Mn5Si3 with a collinear checkerboard magnetic order. We show that the staggered spin-momentum interaction is set by nonrelativistic spin-symmetries which were previously omitted in relativistic physics classifications of spin interactions and topological quasiparticles. Our measurements of a spontaneous Hall effect in epilayers of antiferromagnetic Mn5Si3 with vanishing magnetization are consistent with our theory predictions. Bloch electrons with the unconventional staggered spin interaction, compatible with abundant low atomic-number materials, strong spin-coherence, and collinear antiferromagnetic order open unparalleled possibilities for realizing T-symmetry broken spin and topological quantum phases.