论文标题

超级流体Bjorken流的流体动力吸引子和新颖的固定点

Hydrodynamic attractor and novel fixed points in superfluid Bjorken flow

论文作者

Mitra, Toshali, Mukhopadhyay, Ayan, Soloviev, Alexander

论文摘要

我们扩展了儿子和尼古拉斯的量子有效方法,并结合了耗散,我们开发了一种错误的形式主义,用于通过包括戈德石玻色子和冷凝物以及流体动力模式,描述从平衡中描述超流体,作为有效的自由度。我们发现,经历了Bjorken流量的超流体的演变受传统的流体动力吸引子,具有不间断的对称性和偶数偶数的非缺失性固定点,具有破碎的对称性。如果初始温度是超临界的,则冷凝水的速度很小,并且系统被流体动力吸引子捕获,以在很长的中间时间迅速加热并最终切换到对称性破坏的固定点之一。最后,我们表明固定点在不均匀的扰动上是不稳定的,这应该导致旋转分解。我们得出的结论是,这些特征应该超出误形形式主义。

Extending the quantum effective approach of Son and Nicolis and incorporating dissipation, we develop a MIS formalism for describing a superfluid out of equilibrium by including the Goldstone boson and the condensate together with the hydrodynamic modes as the effective degrees of freedom. We find that the evolution of the superfluid undergoing Bjorken flow is governed by the conventional hydrodynamic attractor with unbroken symmetry and an even number of novel non-dissipative fixed points with broken symmetry. If the initial temperature is super-critical, then the condensate becomes exponentially small very rapidly and the system is trapped by the hydrodynamic attractor for a long intermediate time before it reheats rapidly and switches to one of the symmetry-breaking fixed points eventually. Finally, we show that the fixed points are unstable against inhomogeneous perturbations that should lead to spinodal decomposition. We conclude that these features should be generic beyond the MIS formalism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源