论文标题
3D人类运动期望和分类
3D Human motion anticipation and classification
论文作者
论文摘要
人类运动预测和理解是一个具有挑战性的问题。由于人类运动的复杂动力和未来预测的非确定性方面。我们为人类运动预测和特征学习提出了一个新颖的顺序到序列模型,该模型经过修改的生成对抗网络训练,具有自定义损耗功能,从人类运动动画中汲取灵感,并可以从相同的输入姿势中控制多个预测运动之间的变化。 我们的模型学会从相同的输入序列预测人类姿势的多个未来序列。我们表明,歧视者通过在行动识别任务中使用学习的功能来了解人类运动的一般表现。此外,为了量化非确定性预测的质量,我们同时训练一个运动质量评估网络,该网络了解给定的姿势序列是真正的人类运动的可能性。 我们在两个最大的人类姿势数据集上测试了我们的模型:NTURGB-D和Human 36M。我们对单个动作类型进行训练。通过从相同输入中产生多个合理的期货并显示每个损失函数的效果,可以证明其运动估计的预测能力。此外,我们表明,使用从歧视者中学到的功能,训练活动识别网络的时期数量不到一半。
Human motion prediction and understanding is a challenging problem. Due to the complex dynamic of human motion and the non-deterministic aspect of future prediction. We propose a novel sequence-to-sequence model for human motion prediction and feature learning, trained with a modified version of generative adversarial network, with a custom loss function that takes inspiration from human motion animation and can control the variation between multiple predicted motion from the same input poses. Our model learns to predict multiple future sequences of human poses from the same input sequence. We show that the discriminator learns general presentation of human motion by using the learned feature in action recognition task. Furthermore, to quantify the quality of the non-deterministic predictions, we simultaneously train a motion-quality-assessment network that learns the probability that a given sequence of poses is a real human motion or not. We test our model on two of the largest human pose datasets: NTURGB-D and Human3.6M. We train on both single and multiple action types. Its predictive power for motion estimation is demonstrated by generating multiple plausible futures from the same input and show the effect of each of the loss functions. Furthermore, we show that it takes less than half the number of epochs to train an activity recognition network by using the feature learned from the discriminator.