论文标题

$ g $索引,拓扑动力和标记属性

$G$-index, topological dynamics and marker property

论文作者

Tsukamoto, Masaki, Tsutaya, Mitsunobu, Yoshinaga, Masahiko

论文摘要

鉴于有限的$ g $的行动,我们可以定义其指数。 $ g $索引大致测量给定的$ g $空间的大小。我们探索$ g $索引理论与拓扑动态之间的联系。对于定点的免费动力学系统,我们研究了$ p $ - 周期点的$ \ mathbb {z} _p $ - 索引。我们发现它的增长最多是$ p $的线性。作为一个应用程序,我们构建了一个没有标记属性的自由动力系统。这解决了已经开放了几年的问题。

Given an action of a finite group $G$, we can define its index. The $G$-index roughly measures a size of the given $G$-space. We explore connections between the $G$-index theory and topological dynamics. For a fixed-point free dynamical system, we study the $\mathbb{Z}_p$-index of the set of $p$-periodic points. We find that its growth is at most linear in $p$. As an application, we construct a free dynamical system which does not have the marker property. This solves a problem which has been open for several years.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源