论文标题
通过自适应不对称标签锐化的知识蒸馏,用于半监督胸部X射线的半监督断裂检测
Knowledge Distillation with Adaptive Asymmetric Label Sharpening for Semi-supervised Fracture Detection in Chest X-rays
论文作者
论文摘要
通过半监督学习(SSL)设置来利用可用的医疗记录来培训高性能计算机辅助诊断(CAD)模型,以应对大规模医疗图像注释所涉及的高度高劳动力成本。尽管在SSL上受到了广泛的关注,但以前的方法未能说明病历中的疾病患病率低; 2)使用医疗记录中指出的图像水平诊断。这两个问题都是CAD模型SSL独有的。在这项工作中,我们提出了一种新的知识蒸馏方法,该方法有效利用从医疗记录中提取的大规模图像级标签,并以有限的专家注释的区域级标签增强,以训练肋骨和锁骨裂缝CAD CAD胸部X射线(CXR)。我们的方法利用教师模型范式,并具有一种新型的自适应不对称标签锐化(AALS)算法来解决特殊存在于医疗领域中的标签不平衡问题。我们在9年(2008- 2016年)的所有CXR(n = 65,845)上对所有CXR(n = 65,845)进行了广泛评估,对最常见的肋骨和锁骨骨折。实验结果表明,我们的方法达到了最新的断裂检测性能,即接收器操作特征曲线(AUROC)下的区域为0.9318,而自由反应接收器的操作特征(FROC)得分为0.8914在肋骨上的骨折上的距离为0.8914,以先前的Auroc auroc auroc gap和1.63%的范围均超过了先前的改进。对于锁骨断裂检测,还观察到一致的性能增长。
Exploiting available medical records to train high performance computer-aided diagnosis (CAD) models via the semi-supervised learning (SSL) setting is emerging to tackle the prohibitively high labor costs involved in large-scale medical image annotations. Despite the extensive attentions received on SSL, previous methods failed to 1) account for the low disease prevalence in medical records and 2) utilize the image-level diagnosis indicated from the medical records. Both issues are unique to SSL for CAD models. In this work, we propose a new knowledge distillation method that effectively exploits large-scale image-level labels extracted from the medical records, augmented with limited expert annotated region-level labels, to train a rib and clavicle fracture CAD model for chest X-ray (CXR). Our method leverages the teacher-student model paradigm and features a novel adaptive asymmetric label sharpening (AALS) algorithm to address the label imbalance problem that specially exists in medical domain. Our approach is extensively evaluated on all CXR (N = 65,845) from the trauma registry of anonymous hospital over a period of 9 years (2008-2016), on the most common rib and clavicle fractures. The experiment results demonstrate that our method achieves the state-of-the-art fracture detection performance, i.e., an area under receiver operating characteristic curve (AUROC) of 0.9318 and a free-response receiver operating characteristic (FROC) score of 0.8914 on the rib fractures, significantly outperforming previous approaches by an AUROC gap of 1.63% and an FROC improvement by 3.74%. Consistent performance gains are also observed for clavicle fracture detection.