论文标题
精确,近似和容忍误差的某些算法匹配
Some Algorithms on Exact, Approximate and Error-Tolerant Graph Matching
论文作者
论文摘要
该图是工程和科学中最广泛使用的数学结构之一,因为其代表性和固有的能力证明了对象之间的关系。这项工作的目的是使用图表的代表力介绍新的图形匹配技术,并将其应用于结构模式识别应用。我们对各种精确和不精确的图形匹配技术进行了广泛的调查。提出了使用同构概念匹配的图形匹配。提出了一类图形匹配算法的类别,该算法通过使用某种相关性来删除不太重要的节点来降低图形大小。我们提出了一种使用节点收缩来匹配误差图的方法,其中给定图通过收缩较小的程度节点转化为另一个图。我们使用此方案扩展了图编辑距离的概念,可以用作执行时间和准确性之间的权衡。我们通过利用各种节点中心性信息来描述一种图形匹配的方法,该方法通过基于给定的中心度度量从两个图中删除一小部分节点来降低图的大小。图形匹配问题本质地链接到图形的几何形状和拓扑。我们引入了一种新颖的方法,可以使用几何图来测量图形相似性。我们使用其顶点的位置定义了两个几何图之间的顶点距离,并仅在所有图表的集合上显示它是一个只有顶点的度量的度量。我们根据边缘方向,长度和边缘位置定义两个图之间的边缘距离。然后,我们将顶点距离和边缘距离的概念结合在一起,以定义两个几何图之间的图形距离,并将其显示为公制。最后,我们使用所提出的图形相似性框架执行精确和耐受性的图形匹配。
The graph is one of the most widely used mathematical structures in engineering and science because of its representational power and inherent ability to demonstrate the relationship between objects. The objective of this work is to introduce the novel graph matching techniques using the representational power of the graph and apply it to structural pattern recognition applications. We present an extensive survey of various exact and inexact graph matching techniques. Graph matching using the concept of homeomorphism is presented. A category of graph matching algorithms is presented, which reduces the graph size by removing the less important nodes using some measure of relevance. We present an approach to error-tolerant graph matching using node contraction where the given graph is transformed into another graph by contracting smaller degree nodes. We use this scheme to extend the notion of graph edit distance, which can be used as a trade-off between execution time and accuracy. We describe an approach to graph matching by utilizing the various node centrality information, which reduces the graph size by removing a fraction of nodes from both graphs based on a given centrality measure. The graph matching problem is inherently linked to the geometry and topology of graphs. We introduce a novel approach to measure graph similarity using geometric graphs. We define the vertex distance between two geometric graphs using the position of their vertices and show it to be a metric over the set of all graphs with vertices only. We define edge distance between two graphs based on the angular orientation, length and position of the edges. Then we combine the notion of vertex distance and edge distance to define the graph distance between two geometric graphs and show it to be a metric. Finally, we use the proposed graph similarity framework to perform exact and error-tolerant graph matching.