论文标题
在统治多项式的真正根源
On the Real Roots of Domination Polynomials
论文作者
论文摘要
图$ n $的统一集合$ g $的$ s $是$ g $的顶点的一个子集,因此每个顶点都在$ s $中,或与$ s $的顶点相邻。统治多项式由$ d(g,x)= \ sum d_k x^k $定义,其中$ d_k $是$ g $中的主导套件,带有$ g $,带有基数$ k $。在本文中,我们表明,统治多项式的真正根源为$( - \ infty,0] $。
A dominating set $S$ of a graph $G$ of order $n$ is a subset of the vertices of $G$ such that every vertex is either in $S$ or adjacent to a vertex of $S$. The domination polynomial is defined by $D(G,x) = \sum d_k x^k$ where $d_k$ is the number of dominating sets in $G$ with cardinality $k$. In this paper we show that the closure of the real roots of domination polynomials is $(-\infty,0]$.