论文标题

混合微/宏/宏观水平卷积用于异质图学习

Hybrid Micro/Macro Level Convolution for Heterogeneous Graph Learning

论文作者

Yu, Le, Sun, Leilei, Du, Bowen, Liu, Chuanren, Lv, Weifeng, Xiong, Hui

论文摘要

在实际场景中,异质图无处不在,其中每个图由多种类型的节点和边缘组成。在异质图上的表示形式学习旨在获得可以保留节点属性和关系信息的低维节点表示。但是,大多数现有的图形卷积方法都是为均匀图设计的,因此无法处理异质图。一些针对异构图设计的最新方法还面临着几个问题,包括对异质性质的利用不足,结构信息丢失以及缺乏可解释性。在本文中,我们提出了一种新型的异质图卷积方法HGCONV,以学习具有混合微/宏/宏级卷积操作的异质图上的综合节点表示。与现有方法不同,HGCONV可以直接在微观和宏观水平的异质图的固有结构上执行卷积:一种微级别的卷积,以了解节点在相同关系中的重要性,并在相同的关系中学习节点的重要性,并在不同关系中区分跨关系差异的宏级卷积。混合策略使HGCONV能够完全利用具有适当解释性的异质信息。此外,加权残差连接旨在适应焦点节点的固有属性和邻居信息。对各种任务的广泛实验不仅证明了HGCONV优于现有方法的优势,而且还表明了我们的图形分析方法的直观解释性。

Heterogeneous graphs are pervasive in practical scenarios, where each graph consists of multiple types of nodes and edges. Representation learning on heterogeneous graphs aims to obtain low-dimensional node representations that could preserve both node attributes and relation information. However, most of the existing graph convolution approaches were designed for homogeneous graphs, and therefore cannot handle heterogeneous graphs. Some recent methods designed for heterogeneous graphs are also faced with several issues, including the insufficient utilization of heterogeneous properties, structural information loss, and lack of interpretability. In this paper, we propose HGConv, a novel Heterogeneous Graph Convolution approach, to learn comprehensive node representations on heterogeneous graphs with a hybrid micro/macro level convolutional operation. Different from existing methods, HGConv could perform convolutions on the intrinsic structure of heterogeneous graphs directly at both micro and macro levels: A micro-level convolution to learn the importance of nodes within the same relation, and a macro-level convolution to distinguish the subtle difference across different relations. The hybrid strategy enables HGConv to fully leverage heterogeneous information with proper interpretability. Moreover, a weighted residual connection is designed to aggregate both inherent attributes and neighbor information of the focal node adaptively. Extensive experiments on various tasks demonstrate not only the superiority of HGConv over existing methods, but also the intuitive interpretability of our approach for graph analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源