论文标题
量子力学中的自我相关性:教学路径
Self-adjointness in Quantum Mechanics: a pedagogical path
论文作者
论文摘要
量子力学中的可观测物由希尔伯特空间上的自动伴侣操作员表示。然而,这种无处不在,知名且非常基础的事实在传统上是微妙的,在量子力学的典型一流阶级以及对自我相遇是“只是技术性的”的教训中的高级物理学家而言。通常的困难是澄清理论中对某些物理特征的需求与自我相邻性的相应数学需求之间的联系,并区分自我接球和遗传操作员不仅要达到数学定义的水平,而且最重要的是,从毛段性,没有自我相关性的角度来看,没有自我相关性,并不能确保理想的物理需求和理论构成理论的理论。在这项工作中,我们组织了大量的标准事实,这些事实是关于自我相关性的身体作用,旨在使量子可观察到的量子成为一定是自我偶然的,而不仅仅是Hermitian操作员。在我们推理方面的核心核心之后 - 必须与可观察到的正式行动相关联的域名宣告,以及自我相邻性的出现,这是基本的物理要求的结果 - 我们包括一些补充材料,这些互补材料包括一些与少数有启发性的数学证明和短期回顾性的研究,并且在当前的研究中,该研究是在当前的研究中,即在当前的研究中,即在当前的研究中,该材料是在当前的研究中的范围。在应用中相关的哈密顿人。
Observables in quantum mechanics are represented by self-adjoint operators on Hilbert space. Such ubiquitous, well-known, and very foundational fact, however, is traditionally subtle to be explained in typical first classes in quantum mechanics, as well as to senior physicists who have grown up with the lesson that self-adjointness is "just technical". The usual difficulties are to clarify the connection between the demand for certain physical features in the theory and the corresponding mathematical requirement of self-adjointness, and to distinguish between self-adjoint and hermitian operator not just at the level of the mathematical definition but most importantly from the perspective that mere hermiticity, without self-adjointness, does not ensure the desired physical requirements and leaves the theory inconsistent. In this work we organise an amount of standard facts on the physical role of self-adjointness into a coherent pedagogical path aimed at making quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators. Next to the central core of our line of reasoning -- the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable, and the emergence of self-adjointness as a consequence of fundamental physical requirements -- we include some complementary materials consisting of a few instructive mathematical proofs and a short retrospective, ranging from the past decades to the current research agenda, on the self-adjointness problem for quantum Hamiltonians of relevance in applications.