论文标题
基于Bregman Divergence的总矩阵信息几何检测器,非均匀混乱中的目标检测
Target Detection within Nonhomogeneous Clutter via Total Bregman Divergence-Based Matrix Information Geometry Detectors
论文作者
论文摘要
信息差异通常用于测量统计歧管上两个元素的差异。具有不同差异的可区分流形可能具有不同的几何特性,这可能会导致许多实际应用中的性能完全不同。在本文中,我们提出了一个基于Bregman Divergence的总矩阵信息几何(TBD-MIG)检测器,并将其应用于检测到非均匀杂物中的靶标。特别是,假定每个样本数据被模型为遗传阳性降低(HPD)矩阵,并且杂物协方差矩阵由一组二次HPD矩阵的TBD估计。然后,我们将信号检测的问题重新制定为在HPD矩阵歧管上区分两个点。提出了三个TBD-MIG探测器,称为总正方形损失,总对数确定因子和总von Neumann Mig探测器,并且提出了由于其歧视和稳健性的干扰能力,因此可以实现出色的性能。模拟显示了与几何检测器相比,使用仿射不变的Riemannian公制以及非均匀杂物中的自适应匹配的过滤器,与几何检测器相比,所提出的TBD-MIG检测器的优势。
Information divergences are commonly used to measure the dissimilarity of two elements on a statistical manifold. Differentiable manifolds endowed with different divergences may possess different geometric properties, which can result in totally different performances in many practical applications. In this paper, we propose a total Bregman divergence-based matrix information geometry (TBD-MIG) detector and apply it to detect targets emerged into nonhomogeneous clutter. In particular, each sample data is assumed to be modeled as a Hermitian positive-definite (HPD) matrix and the clutter covariance matrix is estimated by the TBD mean of a set of secondary HPD matrices. We then reformulate the problem of signal detection as discriminating two points on the HPD matrix manifold. Three TBD-MIG detectors, referred to as the total square loss, the total log-determinant and the total von Neumann MIG detectors, are proposed, and they can achieve great performances due to their power of discrimination and robustness to interferences. Simulations show the advantage of the proposed TBD-MIG detectors in comparison with the geometric detector using an affine invariant Riemannian metric as well as the adaptive matched filter in nonhomogeneous clutter.