论文标题
Dynamic-K推荐具有个性化决策边界
Dynamic-K Recommendation with Personalized Decision Boundary
论文作者
论文摘要
在本文中,我们在最常见的情况下使用隐式反馈(例如,点击,购买)调查了推荐任务。朝这个方向的最新方法通常提出问题,以便在一组项目(例如网页,产品)上学习个性化排名。然后将TOP-N结果作为建议提供给用户,其中N通常是系统根据某些启发式标准(例如页面大小,屏幕尺寸)预先定义的固定数字。这个固定数量的推荐方案有一个主要的假设,即,对于用户的偏好,总是有足够的相关项目。不幸的是,在现实世界中,这个假设可能并不总是存在。在某些应用程序中,推荐的候选项目可能非常有限,并且一些用户可能在建议方面具有很高的相关性要求。这样,即使排名第一的项目也可能与用户的喜好无关。因此,我们认为提供动态-K建议至关重要,在候选项目集和目标用户方面,K应该不同。我们将这一动态-K推荐任务制定为具有排名和分类目标的联合学习问题。排名目标与现有方法相同,即,根据用户的兴趣创建项目排名列表。分类目标在这项工作中是独一无二的,该工作旨在学习个性化的决策边界,以区分相关项目与无关的项目。基于这些思想,我们将两种基于最先进的排名建议方法(即BPRMF和HRM)扩展到相应的Dynamic-K版本,即DK-BPRMF和DK-HRM。我们在两个数据集上的实验结果表明,动态-K模型比原始的固定N建议方法更有效。
In this paper, we investigate the recommendation task in the most common scenario with implicit feedback (e.g., clicks, purchases). State-of-the-art methods in this direction usually cast the problem as to learn a personalized ranking on a set of items (e.g., webpages, products). The top-N results are then provided to users as recommendations, where the N is usually a fixed number pre-defined by the system according to some heuristic criteria (e.g., page size, screen size). There is one major assumption underlying this fixed-number recommendation scheme, i.e., there are always sufficient relevant items to users' preferences. Unfortunately, this assumption may not always hold in real-world scenarios. In some applications, there might be very limited candidate items to recommend, and some users may have very high relevance requirement in recommendation. In this way, even the top-1 ranked item may not be relevant to a user's preference. Therefore, we argue that it is critical to provide a dynamic-K recommendation, where the K should be different with respect to the candidate item set and the target user. We formulate this dynamic-K recommendation task as a joint learning problem with both ranking and classification objectives. The ranking objective is the same as existing methods, i.e., to create a ranking list of items according to users' interests. The classification objective is unique in this work, which aims to learn a personalized decision boundary to differentiate the relevant items from irrelevant items. Based on these ideas, we extend two state-of-the-art ranking-based recommendation methods, i.e., BPRMF and HRM, to the corresponding dynamic-K versions, namely DK-BPRMF and DK-HRM. Our experimental results on two datasets show that the dynamic-K models are more effective than the original fixed-N recommendation methods.