论文标题

迈向现实世界的BCI:CCSPNET,一个紧凑的主题无关运动图像框架

Towards Real-World BCI: CCSPNet, A Compact Subject-Independent Motor Imagery Framework

论文作者

Nouri, Mahbod, Moradi, Faraz, Ghaemi, Hafez, Nasrabadi, Ali Motie

论文摘要

传统的大脑计算机接口(BCI)需要为每个用户提供完整的数据收集,培训和校准阶段,然后才能使用。近年来,已经开发了许多独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法的性能较弱,而有些方法在计算上的性能很高。潜在的现实应用程序将大大受益于更准确,紧凑和计算高效的主体独立BCI。在这项工作中,我们提出了一个新颖的独立于主题的BCI框架,名为CCSPNET(卷积通用的空间模式网络),该框架对大型脑电图(EEG)的运动图像(MI)范式进行了训练,该范围是由每项54个执行两层式Mi Mi Handmovement Movement Mivement Mivement Mivement Mi sassss take take take take eeg数据库(EEG)信号。提出的框架应用小波内核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。用于空间特征提取的常见空间模式(CSP)算法,并且密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以拥有一个紧凑的BCI,该BCI可以达到SD和SI最先进的性能,可与复杂和计算昂贵的模型相当。

A conventional brain-computer interface (BCI) requires a complete data gathering, training, and calibration phase for each user before it can be used. In recent years, a number of subject-independent (SI) BCIs have been developed. Many of these methods yield a weaker performance compared to the subject-dependent (SD) approach, and some are computationally expensive. A potential real-world application would greatly benefit from a more accurate, compact, and computationally efficient subject-independent BCI. In this work, we propose a novel subject-independent BCI framework, named CCSPNet (Convolutional Common Spatial Pattern Network) that is trained on the motor imagery (MI) paradigm of a large-scale electroencephalography (EEG) signals database consisting of 400 trials for every 54 subjects who perform two-class hand-movement MI tasks. The proposed framework applies a wavelet kernel convolutional neural network (WKCNN) and a temporal convolutional neural network (TCNN) in order to represent and extract the spectral features of EEG signals. A common spatial pattern (CSP) algorithm is implemented for spatial feature extraction, and the number of CSP features is reduced by a dense neural network. Finally, the class label is determined by a linear discriminant analysis (LDA) classifier. The CCSPNet evaluation results show that it is possible to have a compact BCI that achieves both SD and SI state-of-the-art performance comparable to complex and computationally expensive models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源