论文标题

功能辅助的自适应调整深度学习,以进行大规模设备检测

Feature-Aided Adaptive-Tuning Deep Learning for Massive Device Detection

论文作者

Shao, Xiaodan, Chen, Xiaoming, Qiang, Yiyang, Zhong, Caijun, Zhang, Zhaoyang

论文摘要

随着物联网(IoT)的不断增长的发展,即将到来的第六代(6G)无线网络需要支持大量零星交通设备的无授予随机访问。特别是,在每个时间插槽开始时,基站(BS)基于从活动设备发送的接收到的试验序列执行关节活动检测和通道估计(JADCE)。由于大规模天线阵列的部署以及大量的物联网设备的存在,常规的JADCE方法通常具有较高的计算复杂性,需要长时间的试验序列。为了解决这些挑战,本文提出了6G无线网络中JADCE的新型深度学习框架,其中包含缩小模块,深度学习网络模块,主动设备检测模块和通道估计模块。然后,提出了先前的功能学习,然后提出了一种自适应调整策略,其中引入了由期望最大化(EM)组成的内部网络,并引入了后传播,以共同调整精度并了解设备状态矩阵的分布参数。最后,通过设计逐层和外层逐层训练方法,建立了功能辅助的自适应调整深度学习网络。理论分析和仿真结果均证实,所提出的深度学习框架的计算复杂性低,并且在实际情况下需要简短的试点序列。

With the increasing development of Internet of Things (IoT), the upcoming sixth-generation (6G) wireless network is required to support grant-free random access of a massive number of sporadic traffic devices. In particular, at the beginning of each time slot, the base station (BS) performs joint activity detection and channel estimation (JADCE) based on the received pilot sequences sent from active devices. Due to the deployment of a large-scale antenna array and the existence of a massive number of IoT devices, conventional JADCE approaches usually have high computational complexity and need long pilot sequences. To solve these challenges, this paper proposes a novel deep learning framework for JADCE in 6G wireless networks, which contains a dimension reduction module, a deep learning network module, an active device detection module, and a channel estimation module. Then, prior-feature learning followed by an adaptive-tuning strategy is proposed, where an inner network composed of the Expectation-maximization (EM) and back-propagation is introduced to jointly tune the precision and learn the distribution parameters of the device state matrix. Finally, by designing the inner layer-by-layer and outer layer-by-layer training method, a feature-aided adaptive-tuning deep learning network is built. Both theoretical analysis and simulation results confirm that the proposed deep learning framework has low computational complexity and needs short pilot sequences in practical scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源