论文标题

在Helgason-Johnson上

On the Helgason-Johnson bound

论文作者

Dong, Chao-Ping

论文摘要

令$ g $为一个简单的非紧凑线性谎言组。让$π$为$ g $的任何不可约的单一表示,而无限字符$λ$,其连续部分为$ν$。 1969年,美丽的Helgason-Jonson绑定说,$ν$的规范是$ρ(g)$的上限,这代表了$ g $的正根的半和。当前的论文旨在为$π$提供无限维度时的框架,以增强Helgason-Johnson的约束。我们为特殊的谎言组有明确的结果。证明的成分包括Parathasarathy的Dirac操作员不平等,Vogan铅笔以及Salamanca-Riba和Vogan引入的单位凸面船体。

Let $G$ be a simple non-compact linear Lie group. Let $π$ be any irreducible unitary representation of $G$ with infinitesimal character $Λ$ whose continuous part is $ν$. The beautiful Helgason-Jonson bound in 1969 says that the norm of $ν$ is upper bounded by the norm of $ρ(G)$, which stands for the half sum of the positive roots of $G$. The current paper aims to give a framework to sharpen the Helgason-Johnson bound when $π$ is infinite-dimensional. We have explicit results for exceptional Lie groups. Ingredients of the proof include Parathasarathy's Dirac operator inequality, Vogan pencil, and the unitarily small convex hull introduced by Salamanca-Riba and Vogan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源