论文标题
Navier-Stokes系统的单数解决方案的稳定性
Stability of singular solutions to the Navier-Stokes system
论文作者
论文摘要
我们开发了数学方法,使我们能够研究解决三维的纳维尔 - 斯托克斯系统的渐近特性,以在整个三维空间中用于不可压缩的流体。我们要么处理凯奇问题,要么处理固定问题,在这种问题上,由于奇异的外力,解决方案可能是单数的,它们是单数有限的措施,要么是具有有界傅立叶变换的更一般的钢化度分布。我们介绍了此类溶液的渐近特性的结果,要么是用于大量空间变量(所谓的远场渐近学)或大量时间值的结果。
We develop mathematical methods which allow us to study asymptotic properties of solutions to the three dimensional Navier-Stokes system for incompressible fluid in the whole three dimensional space. We deal either with the Cauchy problem or with the stationary problem where solutions may be singular due to singular external forces which are either singular finite measures or more general tempered distributions with bounded Fourier transforms. We present results on asymptotic properties of such solutions either for large values of the space variables (so called the far-field asymptotics) or for large values of time.