论文标题
APIK:具有部分微分方程的主动物理知识的Kriging模型
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
论文作者
论文摘要
Kriging(或高斯过程回归)是一种流行的机器学习方法,用于其灵活性和封闭形式的预测表达式。但是,将Kriging应用于工程系统的主要挑战之一是,由于测量限制和高传感成本,可用的测量数据很少。另一方面,工程系统的物理知识通常以部分微分方程(PDE)的形式获得并表示。我们在这项工作中介绍了PDE通知的Kriging模型(PIK),该模型通过一组PDE点引入PDE信息,并进行类似于标准Kriging方法的后验预测。提出的PIK模型可以合并来自线性和非线性PDE的物理知识。为了进一步提高学习绩效,我们提出了一个主动的PIK框架(APIK),该框架设计PDE点以基于PIK模型和测量数据来利用PDE信息。所选的PDE点不仅探索整个输入空间,而且还利用PDE信息对于降低预测不确定性至关重要的位置。最后,为参数估计而开发了一种期望最大化算法。我们证明了APIK在两个合成示例,一个冲击波案例研究和激光加热案例研究中的有效性。
Kriging (or Gaussian process regression) is a popular machine learning method for its flexibility and closed-form prediction expressions. However, one of the key challenges in applying kriging to engineering systems is that the available measurement data is scarce due to the measurement limitations and high sensing costs. On the other hand, physical knowledge of the engineering system is often available and represented in the form of partial differential equations (PDEs). We present in this work a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method. The proposed PIK model can incorporate physical knowledge from both linear and nonlinear PDEs. To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data. The selected PDE points not only explore the whole input space but also exploit the locations where the PDE information is critical in reducing predictive uncertainty. Finally, an expectation-maximization algorithm is developed for parameter estimation. We demonstrate the effectiveness of APIK in two synthetic examples, a shock wave case study, and a laser heating case study.