论文标题
用基于3D点的深度学习方法对玫瑰花植物的结构部分进行分割
Segmentation of structural parts of rosebush plants with 3D point-based deep learning methods
论文作者
论文摘要
对植物3D模型的结构部分进行分割是植物表型的重要步骤,尤其是在监测建筑和形态学特征方面。当前的最新方法依靠手工制作的3D本地特征来对植物结构的几何变化进行建模。尽管对点云的深度学习的最新进展具有提取相关的本地和全球特征的潜力,但标记的3D植物数据的稀缺性阻碍了这种潜力的探索。我们改编了六个基于点的深度学习体系结构(PointNet,PointNet ++,DGCNN,PointCNN,Shellnet,Riconv),以分割Rosebush模型的结构部分。我们生成了3D合成的Rosbush模型,以提供足够数量的标记数据,以修改和预培训这些架构。为了评估他们在真正的Rosebush植物上的性能,我们使用了完全注释点云模型的Rose-X数据集。我们提供了有或没有合成数据的实验,即使使用有限的真实植物数据,也可以证明基于点的深度学习技术的潜力。实验结果表明,PointNet ++在六个基于六个的深度学习方法中产生最高的分割精度。 PointNet ++的优点是,它在Point Cloud数据的层次结构组织的尺度上提供了灵活性。除了PointNet以外,使用合成3D模型的预训练提高了所有体系结构的性能。
Segmentation of structural parts of 3D models of plants is an important step for plant phenotyping, especially for monitoring architectural and morphological traits. Current state-of-the art approaches rely on hand-crafted 3D local features for modeling geometric variations in plant structures. While recent advancements in deep learning on point clouds have the potential of extracting relevant local and global characteristics, the scarcity of labeled 3D plant data impedes the exploration of this potential. We adapted six recent point-based deep learning architectures (PointNet, PointNet++, DGCNN, PointCNN, ShellNet, RIConv) for segmentation of structural parts of rosebush models. We generated 3D synthetic rosebush models to provide adequate amount of labeled data for modification and pre-training of these architectures. To evaluate their performance on real rosebush plants, we used the ROSE-X data set of fully annotated point cloud models. We provided experiments with and without the incorporation of synthetic data to demonstrate the potential of point-based deep learning techniques even with limited labeled data of real plants. The experimental results show that PointNet++ produces the highest segmentation accuracy among the six point-based deep learning methods. The advantage of PointNet++ is that it provides a flexibility in the scales of the hierarchical organization of the point cloud data. Pre-training with synthetic 3D models boosted the performance of all architectures, except for PointNet.