论文标题
变分量子克隆:改善量子隐式分析的实用性
Variational Quantum Cloning: Improving Practicality for Quantum Cryptanalysis
论文作者
论文摘要
对标准量子密码系统的密码分析通常涉及在基础方案上找到最佳的对抗攻击策略。在许多情况下,建模量子攻击的核心原理降低了对手克隆未知量子状态的能力,从而有助于提取某些有意义的秘密信息。显式最佳攻击策略通常由于较大的电路深度而需要高的计算资源,或者在许多情况下是未知的。在这项工作中,我们提出了分流量子克隆(VQC),这是一种基于量子机器学习的密码分析算法,它允许对手获得使用杂交经典 - 量子技术训练的较短量子循环的最佳(近似)克隆策略。该算法包含具有理论保证,量子电路结构学习和基于梯度下降的优化的有意义的成本功能。我们的方法使端到端发现有效的量子电路可以克隆量子状态的特定家族,从而在量子硬件上实施时会改善克隆的菲德利特人:Rigetti Aspen芯片。最后,我们将这些结果连接到量子密码原语,特别是量子硬币翻转。我们基于量子克隆并由VQC促进了对两个方案的攻击作为示例。结果,我们的算法可以使用近似量子克隆作为资源来改善对这些协议的近期攻击。
Cryptanalysis on standard quantum cryptographic systems generally involves finding optimal adversarial attack strategies on the underlying protocols. The core principle of modelling quantum attacks in many cases reduces to the adversary's ability to clone unknown quantum states which facilitates the extraction of some meaningful secret information. Explicit optimal attack strategies typically require high computational resources due to large circuit depths or, in many cases, are unknown. In this work, we propose variational quantum cloning (VQC), a quantum machine learning based cryptanalysis algorithm which allows an adversary to obtain optimal (approximate) cloning strategies with short depth quantum circuits, trained using hybrid classical-quantum techniques. The algorithm contains operationally meaningful cost functions with theoretical guarantees, quantum circuit structure learning and gradient descent based optimisation. Our approach enables the end-to-end discovery of hardware efficient quantum circuits to clone specific families of quantum states, which in turn leads to an improvement in cloning fidelites when implemented on quantum hardware: the Rigetti Aspen chip. Finally, we connect these results to quantum cryptographic primitives, in particular quantum coin flipping. We derive attacks on two protocols as examples, based on quantum cloning and facilitated by VQC. As a result, our algorithm can improve near term attacks on these protocols, using approximate quantum cloning as a resource.