论文标题

拓扑绝缘子中磁交换响应的各种场景

Variety of scenarios of the magnetic exchange response in topological insulators

论文作者

Nechaev, I. A., Krasovskii, E. E.

论文摘要

我们提出了一个从头开始的相对论K.P理论,即磁交换场对散装晶体间隙区域和三维分层拓扑绝缘子的薄膜中频带结构的影响。对于垂直于层的田地(沿着$ z $),我们揭示了带隙边缘对磁化的响应的新颖的非常规场景。价值和传导状态的修改是根据其$γ$ - 点旋转$ s^z $和总角度动量$ J^z $在本地化的原子场所的。实际情况取决于$ s^z $和$ j^z $具有相同的符号。尤其是,价状态的相反迹象和传导状态的相同符号引起了Bi $ _2 $ _2 $ te $ _3 $的非常规响应 - 既在散装水晶和超薄电影中,从根本上讲,这将使该拓扑绝缘子与Bi $ _2 $ SE $ _3 $的拓扑绝缘子区分开来。为了更深入地了解具有倒置和不转化的零场带结构的绝缘体中不同方案,从第一原理构建了最小的四频三阶K.P模型。在该模型中,我们分析了绝缘子的场诱导的带状结构,并识别出在磁相中出现的Weyl节点,并取决于场景的不同。我们通过Chern Number $ \ Mathcal {C} $来表征修改后的频段结构的拓扑,并找到非常规响应,并伴随着大的Chern Number $ \ Mathcal {C} = \ PM3 $。

We present an ab initio relativistic k.p theory of the effect of magnetic exchange field on the band structure in the gap region of bulk crystals and thin films of three-dimensional layered topological insulators. For the field perpendicular to the layers (along $z$), we reveal novel unconventional scenarios of the response of the band-gap edges to the magnetization. The modification of the valence and conduction states is considered in terms of their $Γ$-point spin $s^z$ and total angular momentum $J^z$ on the atomic sites where the states are localized. The actual scenario depends on whether $s^z$ and $J^z$ have the same or opposite sign. In particular, the opposite sign for the valence state and the same sign for the conduction state give rise to an unconventional response in Bi$_2$Te$_3$ -- both in the bulk crystal and in ultra-thin films, which fundamentally distinguishes this topological insulator from Bi$_2$Se$_3$, where both states have the same sign. To gain a deeper insight into different scenarios in insulators with both inverted and non-inverted zero-field band structure, a minimal four-band third-order k.p model is constructed from first principles. Within this model, we analyze the field-induced band structure of the insulators and identify Weyl nodes that appear in a magnetic phase and behave differently depending on the scenario. We characterize the topology of the modified band structure by the Chern number $\mathcal{C}$ and find the unconventional response to be accompanied by a large Chern number $\mathcal{C}=\pm3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源