论文标题

经典解决方案及其在分裂签名中的双重副本

Classical Solutions and their Double Copy in Split Signature

论文作者

Monteiro, Ricardo, O'Connell, Donal, Veiga, David Peinador, Sergola, Matteo

论文摘要

三分幅度是散射幅度的壳方法中的关键构建块。我们表明,在仪表理论和重力中,通过大量三点幅度计算出的经典对象是分裂签名时段中的纽曼 - 芬罗标量,其中可以为实际的运动学定义三点振幅。实际上,由粒子设置的量子状态是由三分幅度完全确定的连贯状态,这是由于艾科纳尔型的凸起而确定的。从散射幅度的角度来确定了这种最简单的经典解决方案后,我们探索了由传统的振幅的传统双复制副本引起的纽曼 - 柔性标量的双副本,并发现它与经典双重副本的Weyl版本相吻合。我们还利用了经典双副本的Kerr-Schild版本,以确定重力案例中的确切时空度量。最后,我们通过分析延续讨论了这些结果对洛伦兹签名的直接含义。

The three-point amplitude is the key building block in the on-shell approach to scattering amplitudes. We show that the classical objects computed by massive three-point amplitudes in gauge theory and gravity are Newman-Penrose scalars in a split-signature spacetime, where three-point amplitudes can be defined for real kinematics. In fact, the quantum state set up by the particle is a coherent state fully determined by the three-point amplitude due to an eikonal-type exponentiation. Having identified this simplest classical solution from the perspective of scattering amplitudes, we explore the double copy of the Newman-Penrose scalars induced by the traditional double copy of amplitudes, and find that it coincides with the Weyl version of the classical double copy. We also exploit the Kerr-Schild version of the classical double copy to determine the exact spacetime metric in the gravitational case. Finally, we discuss the direct implication of these results for Lorentzian signature via analytic continuation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源