论文标题

神经网络可靠性套件在现实环境中的应用

Application of the Neural Network Dependability Kit in Real-World Environments

论文作者

Sahu, Amit, Vállez, Noelia, Rodríguez-Bobada, Rosana, Alhaddad, Mohamad, Moured, Omar, Neugschwandtner, Georg

论文摘要

在本文中,我们提供了一个指南,用于在NN模型的开发过程中使用神经网络可靠性套件(NNDK),并显示如何在两个图像分类用例中应用算法。案例研究表明,可靠性套件的用法以获取有关NN模型的见解以及他们如何为神经网络模型的开发过程提供信息。通过NNDK中可用的不同指标来解释神经网络之后,开发人员能够提高NNS的准确性,信任开发的网络,并使它们更强大。此外,我们获得了一种新颖的面向应用程序的技术,为用户提供了NN分类结果的支持证据。在医学图像分类用例中,它用于从培训数据集中检索与当前患者图像相似的案例图像,因此可以作为对NN模型的决定的支持,并帮助医生解释结果。

In this paper, we provide a guideline for using the Neural Network Dependability Kit (NNDK) during the development process of NN models, and show how the algorithm is applied in two image classification use cases. The case studies demonstrate the usage of the dependability kit to obtain insights about the NN model and how they informed the development process of the neural network model. After interpreting neural networks via the different metrics available in the NNDK, the developers were able to increase the NNs' accuracy, trust the developed networks, and make them more robust. In addition, we obtained a novel application-oriented technique to provide supporting evidence for an NN's classification result to the user. In the medical image classification use case, it was used to retrieve case images from the training dataset that were similar to the current patient's image and could therefore act as a support for the NN model's decision and aid doctors in interpreting the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源