论文标题

常规分辨率平均很难

Clique Is Hard on Average for Regular Resolution

论文作者

Atserias, Albert, Bonacina, Ilario, de Rezende, Susanna F., Lauria, Massimo, Nordström, Jakob, Razborov, Alexander

论文摘要

我们证明,对于$ k \ ll \ sqrt [4] {n} $常规分辨率需要长度$ n^{ω(k)} $,以确定具有适当选择的边缘密度的erdős-rényi图不包含$ k $ clique。该下限是指数中最佳的乘法常数,这也意味着无条件的$ n^{ω(k)} $在运行时间的下限中,几种最先进的算法都可以在图中找到最大的cliques。

We prove that for $k \ll \sqrt[4]{n}$ regular resolution requires length $n^{Ω(k)}$ to establish that an Erdős-Rényi graph with appropriately chosen edge density does not contain a $k$-clique. This lower bound is optimal up to the multiplicative constant in the exponent, and also implies unconditional $n^{Ω(k)}$ lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源