论文标题
具有随意移动曲面的任意家族的投影品变种的杂物映射
Meromorphic mappings into projective varieties with arbitrary families of moving hypersurfaces
论文作者
论文摘要
在本文中,我们证明了$ \ Mathbb p^n(\ Mathbb c)$的子变量$ v $ subvariety $ v $的第二个主要定理,并带有任意移动的hypersurfaces家族。我们的第二个主要定理概括并改善了与移动性超曲面相mer态映射的所有先前结果,尤其是对毛面映射,以及在亚属性位置移动的超丘角的家族。我们的证明方法与以前用于移动超曲面的作者不同。
In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety $V$ of $\mathbb P^N(\mathbb C)$ with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.