论文标题

连续的玻色网凝结

Continuous Bose-Einstein condensation

论文作者

Chen, Chun-Chia, Escudero, Rodrigo González, Minář, Jiří, Pasquiou, Benjamin, Bennetts, Shayne, Schreck, Florian

论文摘要

Bose-Einstein冷凝物(BEC)是宏观的相干物质波,彻底改变了量子科学和原子物理学。它们对于量子模拟和传感是必不可少的,例如在空间中的基本原子干涉仪以及对爱因斯坦等效原理的雄心勃勃的测试。大幅度增加此类物质波传感器的带宽和精度的关键在于无限期地维持一致的物质波。在这里,我们通过创建无限期持续的锶原子的连续波(CW)冷凝物来证明连续的玻璃体凝结。连贯的物质波是通过从热浴中刺激的原子增益来扩增来维持的。通过比以前的工作相比,通过稳定地补充该浴场,同时获得1000倍高空间的密度,我们保持冷凝状态。迄今为止,这一进展克服了所有原子量子气体实验的基本限制:需要时间 - 时间进行几个冷却阶段。连续物质波扩增将使CW原子激光,CW光学激光器的原子对应物在技术和社会中变得无处不在。这种原子激光器的相干性将不再受到BEC中原子数的限制,并且最终可以达到标准的量子限制。我们的开发提供了一种新的,迄今缺少的原子光学元件,从而实现了连续相干波浪设备的构建。从反向引力波检测器到光学时钟,在创建新的量子传感器类别时,连贯性,带宽和精度的显着改善将是决定性的。

Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einstein's equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源