论文标题
从原点云中进行形状建模和重建的表面自相似性的符号无关的隐性学习
Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape Modeling and Reconstruction from Raw Point Clouds
论文作者
论文摘要
对象的原始点云的形状建模和重建是视觉和图形研究中的基本挑战。经典方法考虑分析形状先验;但是,当扫描点偏离理想的清洁和完整条件时,它们的性能会降低。最近,通过数据驱动的方法取得了重要的进展,该方法从辅助训练形状集中学习了隐式表面表示的全球和/或本地模型。我们是由一种普遍现象的动机,即在物体的整个表面上重复局部表面斑块的自相似形状模式,我们的目的是推动数据驱动的策略,并建议学习一个局部隐式表面网络,以对整个表面进行共享的自适应建模,以从Raw Point Cloud中进行直接的表面重建;我们还通过改善各个表面斑块的优化潜在代码之间的相关性来增强表面自相似性的利用。鉴于原始点的方向可能不可用或嘈杂,因此我们将标志不可知论扩展到我们的本地隐式模型中,这使我们可以从未签名的输入中恢复本地表面的签名隐式字段。我们将框架称为表面自相似性(SAIL-S3)的标志性隐式学习。通过对本地标志翻转的全球优化后,SAIL-S3能够直接建模原始的,未面向的点云并重建高质量的对象表面。实验表明其优于现有方法。
Shape modeling and reconstruction from raw point clouds of objects stand as a fundamental challenge in vision and graphics research. Classical methods consider analytic shape priors; however, their performance degraded when the scanned points deviate from the ideal conditions of cleanness and completeness. Important progress has been recently made by data-driven approaches, which learn global and/or local models of implicit surface representations from auxiliary sets of training shapes. Motivated from a universal phenomenon that self-similar shape patterns of local surface patches repeat across the entire surface of an object, we aim to push forward the data-driven strategies and propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface for a direct surface reconstruction from raw point cloud; we also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches. Given that orientations of raw points could be unavailable or noisy, we extend sign agnostic learning into our local implicit model, which enables our recovery of signed implicit fields of local surfaces from the unsigned inputs. We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3). With a global post-optimization of local sign flipping, SAIL-S3 is able to directly model raw, un-oriented point clouds and reconstruct high-quality object surfaces. Experiments show its superiority over existing methods.