论文标题
黑暗能源调查超新星计划:建模选择效率和观察到的核心崩溃超新星污染
The Dark Energy Survey Supernova Program: Modelling selection efficiency and observed core collapse supernova contamination
论文作者
论文摘要
在高红移处对IA型超新星(SNE IA)的当前和未来宇宙学调查的分析取决于检测到的SN事件的准确光度分类。生成光度SN调查的现实模拟构成了训练和测试光度分类算法的重要步骤,以及纠正由选择效应和污染引起的偏差和校正核心塌陷SNE引起的偏差。我们使用已发表的SN时间序列分光光度计模板,速率,光度函数和SNE及其宿主星系之间的经验关系来构建模拟光度SN调查的框架。我们在黑暗能源调查(DES)5年光度SN样品的背景下介绍了该框架,将我们对DES的模拟与观察到的DES瞬态种群进行了比较。我们在模拟和数据之间在包括哈勃残差在内的许多分布中表现出了极好的一致性。我们估计在应用选择要求和光度分类之前,DES SN样品中预期的核心崩溃部分。在测试了模拟基础的不同建模选择和天体物理假设之后,我们发现预测的污染从5.8%到9.3%不等,平均为7.0%,R.M.S. 1.1%。我们的模拟是第一个在高降射调查中重现观测到的光度SN和宿主星系性能而无需微调输入参数的模拟。此处介绍的仿真方法将是DES光度SN IA样本的宇宙学分析的关键组成部分:纠正因污染而产生的偏见,并评估相关的系统不确定性。
The analysis of current and future cosmological surveys of type Ia supernovae (SNe Ia) at high-redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-year photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 5.8 to 9.3 per cent, with an average of 7.0 per cent and r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.