论文标题
探索面部表情和帕金森检测的情感领域
Exploring Facial Expressions and Affective Domains for Parkinson Detection
论文作者
论文摘要
帕金森氏病(PD)是一种神经系统疾病,会影响面部运动和非语言交流。 PD患者的面部运动降低了称为低毛虫,在MDS-UPDRS-III量表的第3.2项中进行了评估。在这项工作中,我们建议使用基于情感域的面部图像的面部表达分析来改善PD检测。我们提出了不同的领域适应技术,以利用面部识别和面部动作单元(FAU)检测的最新进展。这项工作的主要贡献是:(1)开发深面体系结构以模拟PD患者的缺乏症的新型框架; (2)我们在唤起患者各种表情时,根据单图与图像序列进行实验比较PD检测; (3)我们探索了不同的领域适应技术,以利用最初训练以进行面部识别的现有模型或检测PD患者与健康受试者自动歧视的毒液; (4)一种使用三重损失学习的新方法来改善缺血性模型和PD检测。来自PD患者的真实面部图像的结果表明,我们能够使用图像序列(中性,开始转变,最高,偏置转换和中性)正确地对诱发情绪进行模拟,并且准确提高了5.5%(从72.9%到78.4%),而对单像PD检测方面。我们还表明,我们提出的情感域适应性可提供高达8.9%的PD检测(从78.4%到87.3%的检测准确性)。
Parkinson's Disease (PD) is a neurological disorder that affects facial movements and non-verbal communication. Patients with PD present a reduction in facial movements called hypomimia which is evaluated in item 3.2 of the MDS-UPDRS-III scale. In this work, we propose to use facial expression analysis from face images based on affective domains to improve PD detection. We propose different domain adaptation techniques to exploit the latest advances in face recognition and Face Action Unit (FAU) detection. The principal contributions of this work are: (1) a novel framework to exploit deep face architectures to model hypomimia in PD patients; (2) we experimentally compare PD detection based on single images vs. image sequences while the patients are evoked various face expressions; (3) we explore different domain adaptation techniques to exploit existing models initially trained either for Face Recognition or to detect FAUs for the automatic discrimination between PD patients and healthy subjects; and (4) a new approach to use triplet-loss learning to improve hypomimia modeling and PD detection. The results on real face images from PD patients show that we are able to properly model evoked emotions using image sequences (neutral, onset-transition, apex, offset-transition, and neutral) with accuracy improvements up to 5.5% (from 72.9% to 78.4%) with respect to single-image PD detection. We also show that our proposed affective-domain adaptation provides improvements in PD detection up to 8.9% (from 78.4% to 87.3% detection accuracy).