论文标题
关于Friedmann-Lema-Robertson-Walker解决方案的稳定性
On stability of Friedmann-Lemaître-Robertson-Walker solutions in doubled geometries
论文作者
论文摘要
由带有离散空间的几何模型作为其他维度的动机,我们研究了宇宙学解决方案的稳定性,这些模型具有两个弗里德曼·莱玛·罗伯逊 - 罗伯逊 - 沃克类型的指标。我们提出了一种有效的重力作用,该重力作用与重力理论相似,以相似的方式耦合这两个指标,并分析在小扰动下具有相同指标的标准溶液是否稳定。
Motivated by the models of geometry with discrete spaces as additional dimensions we investigate the stability of cosmological solutions in models with two metrics of the Friedmann-Lemaître-Robertson-Walker type. We propose an effective gravity action that couples the two metrics in a similar manner as in the bimetric theory of gravity and analyse whether standard solutions with identical metrics are stable under small perturbations.