论文标题

古典狼射线星的动态膨胀风模型

Dynamically inflated wind models of classical Wolf-Rayet stars

论文作者

Poniatowski, L. G., Sundqvist, J. O., Kee, N. D., Owocki, S. P., Marchant, P., Decin, L., de Koter, A., Mahy, L., Sana, H.

论文摘要

古典狼射线(WR)阶段的剧烈质量损失对于巨大恒星的晚期进化和最终命运很重要。我们开发了辐射驱动的风流的球形对称时间依赖性和稳态流体动力学模型以及经典WR恒星的相关质量损失。这些仿真基于将静态恒星结构和演化模型中通常使用的不透明性与简单的参数化形式结合在一起,以实现超音速流出内预期的增强的线条畅通无阻。我们的模拟显示,较高的质量损失率是在T \ 200kk附近的深度和热厚层中引发的。所得的速度结构是非单调的,可以分为三个阶段:i)最初加速超音速速度ii)停滞甚至减速,以及iii)快速加速的外部区域。收敛的稳态模拟中看到的特征结构与我们时间相关模型的流出属性非常吻合。通过直接将我们的动态模拟与相应的静静力模型进行比较,我们明确证明了在恒星结构和进化模型的对流效率低下区域中调用额外的能量传输的需求仅仅是执行液压外部边界的人工制品。此外,我们的模拟的“动态膨胀”内部区域为预测的静水WR半径与从光谱法推断的静水压率WR半径之间经常发现的不匹配提供了自然的解释。最后,我们将模拟与基于共同移动框架辐射转移的替代性WR模型进行对比,以计算辐射力。由于目前CMF转移无法处理非单调速度场,因此在此类模拟中避免了此处发现的特征减速区域,通过调用临时高度的集成程度。

Vigorous mass loss in the classical Wolf-Rayet (WR) phase is important for the late evolution and final fate of massive stars. We develop spherically symmetric time-dependent and steady-state hydrodynamical models of the radiation-driven wind outflows and associated mass loss from classical WR stars. The simulations are based on combining the opacities typically used in static stellar structure and evolution models with a simple parametrised form for the enhanced line-opacity expected within a supersonic outflow. Our simulations reveal high mass-loss rates initiated in deep and hot optically thick layers around T\approx 200kK. The resulting velocity structure is non-monotonic and can be separated into three phases: i) an initial acceleration to supersonic speeds ii) stagnation and even deceleration, and iii) an outer region of rapid re-acceleration. The characteristic structures seen in converged steady-state simulations agree well with the outflow properties of our time-dependent models. By directly comparing our dynamic simulations to corresponding hydrostatic models, we demonstrate explicitly that the need to invoke extra energy transport in convectively inefficient regions of stellar structure and evolution models is merely an artefact of enforcing a hydrostatic outer boundary. Moreover, the "dynamically inflated" inner regions of our simulations provide a natural explanation for the often-found mismatch between predicted hydrostatic WR radii and those inferred from spectroscopy. Finally, we contrast our simulations with alternative recent WR wind models based on co-moving frame radiative transfer for computing the radiation force. Since CMF transfer currently cannot handle non-monotonic velocity fields, the characteristic deceleration regions found here are avoided in such simulations by invoking an ad-hoc very high degree of clumping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源