论文标题
关于贝西凸触点的结构
On the structure of Besse convex contact spheres
论文作者
论文摘要
我们认为凸触点球$ y $所有其关闭的Reeb Orbits均已关闭。任何这样的$ y $都可以按照封闭的Reeb Orbits时期进行分层。我们表明,$ y $“类似于”触点椭圆形:任何$ y $的层次都是一个积分的同源性领域,而$ y $ y $的Ekeland-Hofer频谱的顺序与全部动作值相吻合,每个频谱都根据其多样性重复。
We consider convex contact spheres $Y$ all of whose Reeb orbits are closed. Any such $Y$ admits a stratification by the periods of closed Reeb orbits. We show that $Y$ "resembles" a contact ellipsoid: any stratum of $Y$ is an integral homology sphere, and the sequence of Ekeland-Hofer spectral invariants of $Y$ coincides with the full sequence of action values, each one repeated according to its multiplicity.