论文标题
噪音开放量子系统中连贯性的拓扑保护
Topological Protection of Coherence in Noisy Open Quantum Systems
论文作者
论文摘要
我们考虑在存在猝灭障碍的情况下耗散量子系统中的拓扑保护机制,目的是延长Qubits的相干时间。物理设置是Qubits和耗散腔网络的网络,其耦合参数是可调的,因此可以稳定拓扑边缘状态。基准量子的演变完全取决于非弱者哈密顿量,从而从善意的物理过程中出现。只要保留某些对称性,即使在存在无序绕组数字的情况下,也可以在实际空间中定义和评估。因此,我们可以构建嘈杂的开放量子模型的拓扑相图,例如非炎症的Su-Schrieffer- Heeger Dimer模型和包括较长距离耦合的三聚体模型。在存在竞争障碍参数的情况下,观察到拓扑非平凡的部门的有趣的重新进入现象。这意味着,在某些参数区域中,增加障碍会大大增加基准量子的相干时间。
We consider topological protection mechanisms in dissipative quantum systems in the presence of quenched disorder, with the intent to prolong coherence times of qubits. The physical setting is a network of qubits and dissipative cavities whose coupling parameters are tunable, such that topological edge states can be stabilized. The evolution of a fiducial qubit is entirely determined by a non-Hermitian Hamiltonian which thus emerges from a bona-fide physical process. It is shown how even in the presence of disorder winding numbers can be defined and evaluated in real space, as long as certain symmetries are preserved. Hence we can construct the topological phase diagrams of noisy open quantum models, such as the non-Hermitian disordered Su-Schrieffer- Heeger dimer model and a trimer model that includes longer-range couplings. In the presence of competing disorder parameters, interesting re-entrance phenomena of topologically non-trivial sectors are observed. This means that in certain parameter regions, increasing disorder drastically increases the coherence time of the fiducial qubit.