论文标题
朝着准确的主动摄像机定位
Towards Accurate Active Camera Localization
论文作者
论文摘要
在这项工作中,我们解决了主动相机定位的问题,该问题可以积极控制相机运动以实现精确的相机姿势。过去的解决方案主要基于马尔可夫定位,从而减少了定位的位置摄像头的不确定性。这些方法将摄像机定位在离散姿势空间中,并且对定位驱动的场景属性不可知,从而限制了摄像机姿势的精度。我们建议通过由被动和主动定位模块组成的新型活动相机定位算法克服这些局限性。前者通过建立点的摄像头通信来优化连续姿势空间中的相机姿势。后者明确对场景和相机不确定性组件进行建模,以计划正确的摄像头姿势估计的正确路径。我们在合成和扫描现实世界室内场景的挑战性本地化场景上验证了算法。实验结果表明,我们的算法的表现既优于基于马尔可夫定位的方法,又比细尺度相机姿势的精度进行了比较。代码和数据在https://github.com/qhfang/accurateacl上发布。
In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy. Code and data are released at https://github.com/qhFang/AccurateACL.