论文标题

运动图像分类强调基于深度学习框架的相应频域方法

Motor Imagery Classification Emphasizing Corresponding Frequency Domain Method based on Deep Learning Framework

论文作者

Kwon, Byoung-Hee, Lee, Byeong-Hoo, Jeong, Ji-Hoon

论文摘要

脑电图是一种具有用户意图相关功能的非侵入性大脑信号,可在用户和计算机之间有效的双向途径。在这项工作中,我们提出了一个基于相应频率empahsize方法的深度学习框架,以解码2020年国际BCI竞争数据集的运动图像(MI)数据。 MI数据集由3类,即“圆柱”,“球形”和“ lumbrical”组成。我们利用功率谱密度作为强调方法和卷积神经网络来对修改后的MI数据进行分类。结果表明,MI相关的频率范围在MI任务过程中被激活,并提供了神经生理学的证据来设计所提出的方法。当使用建议的方法时,在会议内条件下的平均分类性能为69.68%,在会议间条件下的平均分类性能为52.76%。我们的结果提供了为实用应用开发基于BCI的设备控制系统的可能性。

The electroencephalogram, a type of non-invasive-based brain signal that has a user intention-related feature provides an efficient bidirectional pathway between user and computer. In this work, we proposed a deep learning framework based on corresponding frequency empahsize method to decode the motor imagery (MI) data from 2020 International BCI competition dataset. The MI dataset consists of 3-class, namely 'Cylindrical', 'Spherical', and 'Lumbrical'. We utilized power spectral density as an emphasize method and a convolutional neural network to classify the modified MI data. The results showed that MI-related frequency range was activated during MI task, and provide neurophysiological evidence to design the proposed method. When using the proposed method, the average classification performance in intra-session condition was 69.68% and the average classification performance in inter-session condition was 52.76%. Our results provided the possibility of developing a BCI-based device control system for practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源