论文标题

随机采样高维模型表示高斯过程回归(RS-HDMR-GPR),用于用机器学习的下二维项表示多维函数,允许使用一般方法洞悉

Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR) for representing multidimensional functions with machine-learned lower-dimensional terms allowing insight with a general method

论文作者

Ren, Owen, Boussaidi, Mohamed Ali, Voytsekhovsky, Dmitry, Ihara, Manabu, Manzhos, Sergei

论文摘要

我们提出了RS-HDMR-GPR的Python实现(随机采样高维模型表示高斯过程回归)。该方法构建具有较低维度项的多元函数的表示,要么是对耦合顺序的扩展,要么仅使用给定维度的术语。特别是从稀疏数据中恢复了功能依赖性。该代码还允许将变量的缺失值归纳,并大量修剪有用的HDMR项。该代码还可以用于估计输入变量不同组合的相对重要性,从而为通用机器学习方法添加了洞察力。该回归工具的功能在涉及合成分析功能,水分子的势能表面,材料的动能密度(晶镁,铝和硅的势能表面)以及金融市场数据上证明了。

We present a Python implementation for RS-HDMR-GPR (Random Sampling High Dimensional Model Representation Gaussian Process Regression). The method builds representations of multivariate functions with lower-dimensional terms, either as an expansion over orders of coupling or using terms of only a given dimensionality. This facilitates, in particular, recovering functional dependence from sparse data. The code also allows for imputation of missing values of the variables and for a significant pruning of the useful number of HDMR terms. The code can also be used for estimating relative importance of different combinations of input variables, thereby adding an element of insight to a general machine learning method. The capabilities of this regression tool are demonstrated on test cases involving synthetic analytic functions, the potential energy surface of the water molecule, kinetic energy densities of materials (crystalline magnesium, aluminum, and silicon), and financial market data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源