论文标题
自然语言中的组成性和结构依赖性
Modelling Compositionality and Structure Dependence in Natural Language
论文作者
论文摘要
人类拥有已知宇宙中最复杂的计算机制。我们可以理解丰富的描述能力的语言,并以惊人的清晰度在相同的环境中进行交流。对自然语言兴趣的众多贡献者中有两个 - 构图和结构依赖的特性,有充分的文献记载,并提供了一个宽敞的空间来提出有趣的建模问题。开始回答这些问题的第一步是用正式的术语来实现言语理论。借鉴语言学和集合理论,本文的上半年提出了这些思想的形式化。我们看到处理语言需要具有某些功能约束的认知系统,即。基于时间的增量操作,依赖于结构定义的域。分析这种正式设置所产生的观察结果是建模练习的一部分。使用单词嵌入技术的进步,使用自定义数据集模拟了一个关系学习模型,以说明基于时间的效果填充器结合机制如何满足第一部分中描述的一些约束。该模型映射结构的能力以及其符号连接主义体系结构可以实现认知合理的实现。形式化和仿真共同尝试认识语言理论所施加的约束,并探索通过学习学习实现这些限制的认知模型所带来的机会。
Human beings possess the most sophisticated computational machinery in the known universe. We can understand language of rich descriptive power, and communicate in the same environment with astonishing clarity. Two of the many contributors to the interest in natural language - the properties of Compositionality and Structure Dependence, are well documented, and offer a vast space to ask interesting modelling questions. The first step to begin answering these questions is to ground verbal theory in formal terms. Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis. We see how cognitive systems that process language need to have certain functional constraints, viz. time based, incremental operations that rely on a structurally defined domain. The observations that result from analysing this formal setup are examined as part of a modelling exercise. Using the advances of word embedding techniques, a model of relational learning is simulated with a custom dataset to demonstrate how a time based role-filler binding mechanism satisfies some of the constraints described in the first section. The model's ability to map structure, along with its symbolic-connectionist architecture makes for a cognitively plausible implementation. The formalisation and simulation are together an attempt to recognise the constraints imposed by linguistic theory, and explore the opportunities presented by a cognitive model of relation learning to realise these constraints.