论文标题

通过异质图注意网络标签增强事件检测

Label Enhanced Event Detection with Heterogeneous Graph Attention Networks

论文作者

Cui, Shiyao, Yu, Bowen, Cong, Xin, Liu, Tingwen, Li, Quangang, Shi, Jinqiao

论文摘要

事件检测(ED)旨在识别文本中指定类型的事件触发器的实例。与英语ED不同,由于单词界限不确定,中文ED遭受了单词触发不匹配的问题。将单词信息注入角色级别模型的现有方法已取得了有希望的进展,以减轻此问题,但受两个问题的限制。首先,字符与词典单词之间的相互作用并未完全利用。其次,他们忽略了事件标签提供的语义信息。因此,我们提出了一个名为标签的新型体系结构增强了异质图注意网络(L-HGAT)。具体而言,我们将每个句子转换为一个图,其中字符节点和单词节点与不同类型的边缘连接,因此单词和字符之间的相互作用完全保留。然后引入异质图注意网络以传播关系消息并丰富信息交互。此外,我们将每个标签转换为基于触发性型的嵌入,并设计边距损失,以指导模型区分令人困惑的事件标签。两个基准数据集的实验表明,我们的模型在一系列竞争性基线方法上取得了重大改进。

Event Detection (ED) aims to recognize instances of specified types of event triggers in text. Different from English ED, Chinese ED suffers from the problem of word-trigger mismatch due to the uncertain word boundaries. Existing approaches injecting word information into character-level models have achieved promising progress to alleviate this problem, but they are limited by two issues. First, the interaction between characters and lexicon words is not fully exploited. Second, they ignore the semantic information provided by event labels. We thus propose a novel architecture named Label enhanced Heterogeneous Graph Attention Networks (L-HGAT). Specifically, we transform each sentence into a graph, where character nodes and word nodes are connected with different types of edges, so that the interaction between words and characters is fully reserved. A heterogeneous graph attention networks is then introduced to propagate relational message and enrich information interaction. Furthermore, we convert each label into a trigger-prototype-based embedding, and design a margin loss to guide the model distinguish confusing event labels. Experiments on two benchmark datasets show that our model achieves significant improvement over a range of competitive baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源