论文标题
加权网络图案作为随机步行模式
Weighted network motifs as random walk patterns
论文作者
论文摘要
在过去的二十年中,网络理论在理解现实世界复杂系统的组织和功能方面已证明是一个富有成果的范式。有助于这项工作的一种技术是识别具有功能影响的子图,从而阐明了潜在的进化过程。这样的过分代表的子图“主题”在简单的网络中受到了很多关注,在该网络中,边缘开关或关闭。但是,对于加权网络,基序分析仍未开发。在这里,我们提出了一种新的方法 - 基于一个随机步行者采取固定最大数量的步骤,以研究有限尺寸的加权图案。我们引入了一个接收器节点,以平衡网络并允许在随机助行器的先验固定步骤中检测配置。我们将这种方法应用于不同的实际网络,并根据最大熵选择了特定的基准模型,以测试加权基序的重要性。我们发现,根据与特定配置相关的功能机制,确定的相似性可以使系统的分类:经济网络表现出紧密的模式,同时与生态系统区分开,没有任何先验假设。
Over the last two decades, network theory has shown to be a fruitful paradigm in understanding the organization and functioning of real-world complex systems. One technique helpful to this endeavor is identifying functionally influential subgraphs, shedding light on underlying evolutionary processes. Such overrepresented subgraphs, "motifs", have received much attention in simple networks, where edges are either on or off. However, for weighted networks, motif analysis is still undeveloped. Here, we proposed a novel methodology - based on a random walker taking a fixed maximum number of steps - to study weighted motifs of limited size. We introduce a sink node to balance the network and allow the detection of configurations within an a priori fixed number of steps for the random walker. We applied this approach to different real networks and selected a specific benchmark model based on maximum entropy to test the significance of weighted motifs occurrence. We found that identified similarities enable the classifications of systems according to functioning mechanisms associated with specific configurations: economic networks exhibit close patterns while differentiating from ecological systems without any a priori assumption.