论文标题

混合原子力显微镜中的数字光处理:原位,印刷过程的纳米级表征

Digital Light Processing in a Hybrid Atomic Force Microscope: In situ, Nanoscale Characterization of the Printing Process

论文作者

Higgins, Callie I., Brown, Tobin E., Killgore, Jason P.

论文摘要

立体光刻(SLA)和数字灯处理(DLP)是强大的添加剂制造技术,可以解决广泛的应用程序,包括再生医学,原型化和制造。不幸的是,由于树脂的吸收性,扩散性,反应动力学和必要的照相暴露期间,这些印刷过程引入了微尺尺度各向异性不均匀性。以前,不可能表征高分辨率机械异质性在印刷过程中的发展。通过将DLP 3D打印与原子力显微镜组合在杂化仪器中,可以表征单个原位印刷体素的异质性。在这里,我们描述了该仪器,并演示了三种用于在印刷过程中和之后表征体素的方式。感应模态I映射刚打印的树脂脱落体素的机械性能,提供了研究框架,以研究体素大小,打印曝光参数和素素 - 素的相互作用之间的关系。模态II捕获了原位工作曲线的纳米量,是原位治愈深度测量的首次演示。模态III通过监测构图过程中树脂的粘弹性阻尼系数,动态感知树脂中的局部流变学变化。总体而言,该工具为研究人员提供了一种工具,以发展对树脂开发,过程优化和基本印刷限制的丰富见解。

Stereolithography (SLA) and digital light processing (DLP) are powerful additive manufacturing techniques that address a wide range of applications including regenerative medicine, prototyping, and manufacturing. Unfortunately, these printing processes introduce micrometer-scale anisotropic inhomogeneities due to the resin absorptivity, diffusivity, reaction kinetics, and swelling during the requisite photoexposure. Previously, it has not been possible to characterize high-resolution mechanical heterogeneity as it develops during the printing process. By combining DLP 3D printing with atomic force microscopy in a hybrid instrument, heterogeneity of a single, in situ printed voxel is characterized. Here, we describe the instrument and demonstrate three modalities for characterizing voxels during and after printing. Sensing Modality I maps the mechanical properties of just-printed, resin-immersed voxels, providing the framework to study the relationships between voxel sizes, print exposure parameters, and voxel-voxel interactions. Modality II captures the nanometric, in situ working curve and is the first demonstration of in situ cure depth measurement. Modality III dynamically senses local rheological changes in the resin by monitoring the viscoelastic damping coefficient of the resin during patterning. Overall, this instrument equips researchers with a tool to develop rich insight into resin development, process optimization, and fundamental printing limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源