论文标题
深度重力:通过深度神经网络和地理信息增强流动性流动
Deep Gravity: enhancing mobility flows generation with deep neural networks and geographic information
论文作者
论文摘要
城市内部和城市之间的运动影响我们社会的关键方面,例如幸福感,流行病的传播和环境质量。当有关特定感兴趣的区域不可用有关移动性流的信息时,我们必须依靠数学模型来生成它们。在这项工作中,我们提出了深度重力模型,这是一种有效的方法,是产生流动概率,从而利用从自愿地理数据中提取的许多变量(例如土地利用,道路网络,运输,食品,食物,健康设施),并使用深层神经网络来发现这些变量和迁移流之间的非线性关系。我们的实验是在英格兰,意大利和纽约州进行的迁移率进行的,这表明深层重力具有良好的地理泛化能力,在经典重力模型和不使用深神经网络或地理数据的经典重力模型方面的性能显着提高(尤其是在人口稠密的感兴趣区域)。我们还展示了如何使用可解释的AI技术来解释深重性产生的流量。
The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. When information about mobility flows is not available for a particular region of interest, we must rely on mathematical models to generate them. In this work, we propose the Deep Gravity model, an effective method to generate flow probabilities that exploits many variables (e.g., land use, road network, transport, food, health facilities) extracted from voluntary geographic data, and uses deep neural networks to discover non-linear relationships between those variables and mobility flows. Our experiments, conducted on mobility flows in England, Italy, and New York State, show that Deep Gravity has good geographic generalization capability, achieving a significant increase in performance (especially in densely populated regions of interest) with respect to the classic gravity model and models that do not use deep neural networks or geographic data. We also show how flows generated by Deep Gravity may be explained in terms of the geographic features using explainable AI techniques.