论文标题

整洁:非线性意识培训,以在1T-1R磁带横杆上进行精确和节能的神经网络实施

NEAT: Non-linearity Aware Training for Accurate and Energy-Efficient Implementation of Neural Networks on 1T-1R Memristive Crossbars

论文作者

Bhattacharjee, Abhiroop, Bhatnagar, Lakshya, Kim, Youngeun, Panda, Priyadarshini

论文摘要

回忆性横梁遭受非理想性(例如,偷偷摸摸的路径),这些跨度降低了映射到它们上的深神经网络(DNN)的计算准确性。已经提出了一个1T-1R突触,并与回忆突触(1R)串联添加晶体管(1T),以减轻这种非理想性。我们观察到晶体管的非线性特征会影响1T-1R细胞的总体电导,从而影响横杆中矩阵 - 矢量 - 型(MVM)操作。由输入电压依赖性非线性产生的这种1T-1R非理想性不仅难以建模或制定,而且在映射到横梁上时会导致DNN的急剧性降解。在本文中,我们分析了1T-1R横杆的非线性,并提出了一种新型的非线性意识训练(NEAT)方法来解决非理想性。具体而言,我们首先确定网络权重范围,可以将其映射到晶体管线性工作区域内的1T-1R单元格中。此后,我们通过使用迭代训练算法将DNN的权重定向在线性工作范围内存在。我们的迭代培训显着恢复了由非线性引起的分类精度下降。此外,我们发现每一层的重量分布都不同,又需要晶体管的不同门电压以保证线性操作。基于此观察结果,我们通过在不同层上对1T-1R细胞应用异质栅极控制来实现能源效率,同时确保分类的准确性。最后,我们对CIFAR10和CIFAR100基准数据集进行了各种实验,以证明我们非线性意识培训的有效性。总体而言,当在1T-1R横梁上绘制RESNET18网络时,整齐的能量增益少于1%的精度损失(具有均匀的栅极控制)。

Memristive crossbars suffer from non-idealities (such as, sneak paths) that degrade computational accuracy of the Deep Neural Networks (DNNs) mapped onto them. A 1T-1R synapse, adding a transistor (1T) in series with the memristive synapse (1R), has been proposed to mitigate such non-idealities. We observe that the non-linear characteristics of the transistor affect the overall conductance of the 1T-1R cell which in turn affects the Matrix-Vector-Multiplication (MVM) operation in crossbars. This 1T-1R non-ideality arising from the input voltage-dependent non-linearity is not only difficult to model or formulate, but also causes a drastic performance degradation of DNNs when mapped onto crossbars. In this paper, we analyse the non-linearity of the 1T-1R crossbar and propose a novel Non-linearity Aware Training (NEAT) method to address the non-idealities. Specifically, we first identify the range of network weights, which can be mapped into the 1T-1R cell within the linear operating region of the transistor. Thereafter, we regularize the weights of the DNNs to exist within the linear operating range by using iterative training algorithm. Our iterative training significantly recovers the classification accuracy drop caused by the non-linearity. Moreover, we find that each layer has a different weight distribution and in turn requires different gate voltage of transistor to guarantee linear operation. Based on this observation, we achieve energy efficiency while preserving classification accuracy by applying heterogeneous gate voltage control to the 1T-1R cells across different layers. Finally, we conduct various experiments on CIFAR10 and CIFAR100 benchmark datasets to demonstrate the effectiveness of our non-linearity aware training. Overall, NEAT yields ~20% energy gain with less than 1% accuracy loss (with homogeneous gate control) when mapping ResNet18 networks on 1T-1R crossbars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源