论文标题

深度学习的快速准确的非线性预测

Fast and Accurate Non-Linear Predictions of Universes with Deep Learning

论文作者

de Oliveira, Renan Alves, Li, Yin, Villaescusa-Navarro, Francisco, Ho, Shirley, Spergel, David N.

论文摘要

宇宙学家的目的是建模最初低振幅高斯密度波动的演变,使其成为高度非线性的星系和簇的“宇宙网络”。他们的目的是将这种结构形成过程的模拟与对星系所追踪的大规模结构的观察结果进行比较,并推断占宇宙95%的暗能量和暗物质的特性。这些模拟数十亿个星系的模拟是计算要求的,因此需要更有效的方法来追踪结构的非线性增长。我们构建了一个基于V-NET的模型,该模型将快速线性预测转换为数值模拟的完全非线性预测。我们的NN模型学会模拟模拟至小尺度,并且比当前的最新近似方法更快,更准确。当对训练中使用的宇宙学参数显着不同的宇宙进行测试时,它也可以达到可比的精度。这表明我们的模型超出了我们的培训范围。

Cosmologists aim to model the evolution of initially low amplitude Gaussian density fluctuations into the highly non-linear "cosmic web" of galaxies and clusters. They aim to compare simulations of this structure formation process with observations of large-scale structure traced by galaxies and infer the properties of the dark energy and dark matter that make up 95% of the universe. These ensembles of simulations of billions of galaxies are computationally demanding, so that more efficient approaches to tracing the non-linear growth of structure are needed. We build a V-Net based model that transforms fast linear predictions into fully nonlinear predictions from numerical simulations. Our NN model learns to emulate the simulations down to small scales and is both faster and more accurate than the current state-of-the-art approximate methods. It also achieves comparable accuracy when tested on universes of significantly different cosmological parameters from the one used in training. This suggests that our model generalizes well beyond our training set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源