论文标题
跨度度量及其高阶曲率的边界行为
Boundary behaviour of the Span metric and its higher-order curvatures
论文作者
论文摘要
在本说明中,我们使用缩放原理来研究跨度度量的边界行为及其在有限连接的约旦平面域上的高阶曲率。还获得了该指标在有限连接的Jordan域的边界点附近的定位。此外,我们在$ c^2 $ smooth边界域上获得了该指标的边界尖锐估计,因此,该指标与这些域上的Carathéodory和Kobayashi指标相当。
In this note, we use scaling principle to study the boundary behaviour of the span metric and its higher-order curvatures on finitely connected Jordan planar domains. A localization of this metric near boundary points of finitely connected Jordan domains is also obtained. Further, we obtain boundary sharp estimates for this metric on $ C^2 $-smooth bounded domains and consequently, this metric is comparable to the Carathéodory and the Kobayashi metrics on these domains.