论文标题
Fedder的行动和局部共同体的简单综合体
The Fedder action and a simplicial complex of local cohomologies
论文作者
论文摘要
令$ r $为普通特征的常规环$ p> 0 $,然后让$ \ upessline {\ mathbf {f}} = f_1,\ ldots,f_c $为condimension $ c \ geq 1 $的常规顺序。我们描述了$ r \ langle f \ rangle $ -modules的一个复杂,表示为$Δ\ hspace {-2.65mm}Δ^^\ bullet _ {\ useverline {\ mathbf {f}}}}(美元$δ\ hspace {-2.65mm}δ^c _ {\ usewissline {\ mathbf {f}}}}}}}}}}(r)= h^c _ {\ supperline {\ mathbf {f}}}}}}}}}}}}(r)(r)$,我们可以通过FrobeNius Action Action Action to fiderder Action。我们表明$ h^i(δ\ hspace {-2.65mm}Δ^\ bullet _ {\ usewissline {\ mathbf {f}}}}}}}(r))= 0 $ for All $ i <c $,并且$ h^c(δ\ hspace {-2.65mm}δ^\ bullet _ {\ usewissline {\ mathbf {f}}}}}}(r))$是$ h^c _ {\ undessline {\ mathbf {f}}}(f}}}}(r)$的副本。使用$δ\ hspace {-2.65mm}δ^\ bullet _ {\ usewises {\ mathbf {f}}}}}}(r)$ complex $ \ text {ht}(i)<i <\ text {ht}(i)+c $(如果$ r/i $是cohen-macaulay),则是自动的,然后是模块$ h^{\ text {ht}(i/\下划线{\ mathbf {f}})+c} _ {i/\ lisepline {\ mathbf {f}}}}}}}}}}(r/\ lisesionline {\ mathbf {f}})$ s zariski关闭支持。
Let $R$ be a regular ring of prime characteristic $p > 0$, and let $\underline{\mathbf{f}}=f_1,\ldots,f_c$ be a permutable regular sequence of codimension $c\geq 1$. We describe a complex of $R\langle F \rangle$-modules, denoted $Δ\hspace{-2.65mm}Δ^\bullet_{\underline{\mathbf{f}}}(R)$, whose terms include $Δ\hspace{-2.65mm}Δ^0_{\underline{\mathbf{f}}}(R)=R/\underline{\mathbf{f}}$ equipped with its natural Frobenius action, and $Δ\hspace{-2.65mm}Δ^c_{\underline{\mathbf{f}}}(R)=H^c_{\underline{\mathbf{f}}}(R)$ equipped with a Frobenius action we refer to as the Fedder action. We show that $H^i(Δ\hspace{-2.65mm}Δ^\bullet_{\underline{\mathbf{f}}}(R))=0$ for all $i<c$, and that $H^c(Δ\hspace{-2.65mm}Δ^\bullet_{\underline{\mathbf{f}}}(R))$ is a copy of $H^c_{\underline{\mathbf{f}}}(R)$ equipped with the usual Frobenius action. Using the $Δ\hspace{-2.65mm}Δ^\bullet_{\underline{\mathbf{f}}}(R)$ complex, we show that if $I\supseteq \underline{\mathbf{f}}$ is an ideal such that $H^i_I(R)=0$ for $\text{ht}(I)<i<\text{ht}(I)+c$ (which is automatic if $R/I$ is Cohen-Macaulay), then the module $H^{\text{ht}(I/\underline{\mathbf{f}})+c}_{I/\underline{\mathbf{f}}}(R/\underline{\mathbf{f}})$ has Zariski closed support.