论文标题
深度学习方法的左心室非复杂测量
Deep learning approach to left ventricular non-compaction measurement
论文作者
论文摘要
左心室非菌株(LVNC)是一种罕见的心肌病,其特征是左心室腔中异常小梁。尽管存在用于LVNC诊断的传统计算机视觉方法,但在文献中找不到基于深度学习的工具。在本文中,提出了使用卷积神经网络(CNN)的第一种方法。对四个CNN进行了训练,可以自动分割左心室的压实和小梁区域,以供诊断出患有肥厚性心肌病的患者人群。推论结果证实,基于深度学习的方法可以在LVNC的诊断和测量中获得出色的结果。两个最佳的CNN(U-NET和有效的U-NET B1)在CPU上以少于0.2 s的速度进行图像分割,而GPU上的少于0.01 s。此外,专家心脏病专家对输出图像进行了主观评估,并为所有切片提供了完美的视觉协议,表现优于已经存在的自动工具。
Left ventricular non-compaction (LVNC) is a rare cardiomyopathy characterized by abnormal trabeculations in the left ventricle cavity. Although traditional computer vision approaches exist for LVNC diagnosis, deep learning-based tools could not be found in the literature. In this paper, a first approach using convolutional neural networks (CNNs) is presented. Four CNNs are trained to automatically segment the compacted and trabecular areas of the left ventricle for a population of patients diagnosed with Hypertrophic cardiomyopathy. Inference results confirm that deep learning-based approaches can achieve excellent results in the diagnosis and measurement of LVNC. The two best CNNs (U-Net and Efficient U-Net B1) perform image segmentation in less than 0.2 s on a CPU and in less than 0.01 s on a GPU. Additionally, a subjective evaluation of the output images with the identified zones is performed by expert cardiologists, with a perfect visual agreement for all the slices, outperforming already existing automatic tools.