论文标题

方法很重要:没有情报的交易代理通常超过基于人工智能的交易者

Methods Matter: A Trading Agent with No Intelligence Routinely Outperforms AI-Based Traders

论文作者

Cliff, Dave, Rollins, Michael

论文摘要

使用计算智能(人工智能(AI)和机器学习(ML)的方法)有一段悠久的研究传统,可以自动发现,实施和调整微调策略在金融市场中自主适应性自动化交易,并在此主题上发表了一系列研究论文,例如在IJCAI和人工智能上发表的一系列研究论文,例如,在此期间,这是一项研究,例如,在这里进行了诸如人工精神:我们在这里进行了一些研究:我们在这里进行了一些研究:我们在这里进行了一些研究:我们在这里进行了研究:我们的杂志:我们的杂物:我们的杂物:我们的研究论文中的一项研究论文:我们在这里进行了一些研究。错误的步骤,实际上,据说某些表现最佳的公共域AI/ML交易策略通常会被极其简单的交易策略所表现出来,而这些策略根本不涉及AI或ML。我们在这里很容易揭示的结果很容易被揭示,而相关的关键论文已在十多年前发表,但是这些出版物时的公认方法涉及对交易者的实验评估的一种最低限度的方法,以少数市场场景的商业测试课程的基础进行索赔,从而提出索赔。在本文中,我们使用平行云计算设施对广泛的参数值进行了详尽的测试,在其中进行了数百万个测试,从而创建了更丰富的数据,从中可以得出更牢固的结论。我们表明,出版文献中最好的公共域AI/ML交易者通常会超过“零下智力”交易策略的表现,从表面上看,这种交易策略似乎是如此简单,以至于在财务上是毁灭性的,但是在实践中与市场相互作用的方式比众所周知的AI/ML研究策略更具盈利性。这样一个简单的策略可以胜过建立的基于AI/ML的策略,这表明AI/ML交易策略也许是错误问题的好答案。

There's a long tradition of research using computational intelligence (methods from artificial intelligence (AI) and machine learning (ML)), to automatically discover, implement, and fine-tune strategies for autonomous adaptive automated trading in financial markets, with a sequence of research papers on this topic published at AI conferences such as IJCAI and in journals such as Artificial Intelligence: we show here that this strand of research has taken a number of methodological mis-steps and that actually some of the reportedly best-performing public-domain AI/ML trading strategies can routinely be out-performed by extremely simple trading strategies that involve no AI or ML at all. The results that we highlight here could easily have been revealed at the time that the relevant key papers were published, more than a decade ago, but the accepted methodology at the time of those publications involved a somewhat minimal approach to experimental evaluation of trader-agents, making claims on the basis of a few thousand test-sessions of the trader-agent in a small number of market scenarios. In this paper we present results from exhaustive testing over wide ranges of parameter values, using parallel cloud-computing facilities, where we conduct millions of tests and thereby create much richer data from which firmer conclusions can be drawn. We show that the best public-domain AI/ML traders in the published literature can be routinely outperformed by a "sub-zero-intelligence" trading strategy that at face value appears to be so simple as to be financially ruinous, but which interacts with the market in such a way that in practice it is more profitable than the well-known AI/ML strategies from the research literature. That such a simple strategy can outperform established AI/ML-based strategies is a sign that perhaps the AI/ML trading strategies were good answers to the wrong question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源