论文标题

使用神经网络控制器抵消无设定点跟踪

Offset-free setpoint tracking using neural network controllers

论文作者

Pauli, Patricia, Köhler, Johannes, Berberich, Julian, Koch, Anne, Allgöwer, Frank

论文摘要

在本文中,我们提出了一种使用神经网络控制器分析无偏移设定点跟踪中局部和全局稳定性的方法,并提供了相应吸引力区域的椭圆形内近似值。我们考虑了与神经网络控制器和集成器相关的线性工厂的反馈互连,该植物允许对所需的分段常数参考的无抵消跟踪,该参考将作为外部输入进入控制器。利用神经网络中使用的激活函数是斜率限制的事实,我们得出了线性矩阵不等式,以使用Lyapunov理论来验证稳定性。在说明全球稳定性结果之后,我们提出了较少保守的局部稳定条件(i),以提供给定参考,(ii)对于某个集合的任何参考。后一个结果甚至可以使用参考调查员在设定点更改下进行保证跟踪,这可能会导致吸引区域的显着增加。最后,我们通过验证对稳定的神经网络控制器的稳定性和无抵销的跟踪来证明我们的分析的适用性,该神经网络控制器经过训练以稳定线性化的倒置摆。

In this paper, we present a method to analyze local and global stability in offset-free setpoint tracking using neural network controllers and we provide ellipsoidal inner approximations of the corresponding region of attraction. We consider a feedback interconnection of a linear plant in connection with a neural network controller and an integrator, which allows for offset-free tracking of a desired piecewise constant reference that enters the controller as an external input. Exploiting the fact that activation functions used in neural networks are slope-restricted, we derive linear matrix inequalities to verify stability using Lyapunov theory. After stating a global stability result, we present less conservative local stability conditions (i) for a given reference and (ii) for any reference from a certain set. The latter result even enables guaranteed tracking under setpoint changes using a reference governor which can lead to a significant increase of the region of attraction. Finally, we demonstrate the applicability of our analysis by verifying stability and offset-free tracking of a neural network controller that was trained to stabilize a linearized inverted pendulum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源