论文标题

在电磁隙热点上研究分析物共定位,以通过等离子体增强的光谱镜来高度敏感(生物)分子检测

Investigating Analyte Co-Localization at Electromagnetic Gap Hot-Spots For Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies

论文作者

Rastogi, Rishabh, Arianfard, Hamed, Moss, D., Juodkazis, S., Michel-Adam, P., Krishnamoorthy*, S.

论文摘要

基于表面增强的拉曼或荧光光谱的传感器,超鼻等等离子纳米胶质的电磁热点具有巨大的检测限制到传感器中很少的分子。但是,利用EM热点需要访问差距,这又取决于分析物相对于间隙距离的大小。本文中,我们利用了一个完善的过程,基于全磁力水平的块共聚物胶体的自组装,以产生高密度的等离激子纳米阵列阵列,显示出大量(> 10^10 /cm^2)的均匀柱间间的EM热点。该方法允许方便的手柄系统地将柱间间隙距离降低到低于10 nm的状态。结果表明,分析物尺寸对间隙距离对其在柱间热点上的杠杆作用的影响的引人注目的趋势,以及基于SERS的分子测定的敏感性。比较在表面增强的拉曼和金属增强的荧光构型中检测标记的蛋白质,进一步揭示了荧光比拉曼检测的相对优势,同时遇到了间隙施加的空间限制。对于小的有机分子和蛋白质,都实现了具有检测限制至皮摩尔浓度的限制的定量测定。通过纳米化方法传递的明确定义的几何形状对于达到现实的几何模型至关重要,以在等离子测定中建立结构,光学特性和纳米阵列的灵敏度之间建立有意义的相关性。这些发现强调了对EM热点的合理设计的需求,这些设计考虑了分析物尺寸以提高等离子增强光谱镜的超高灵敏度。

Electromagnetic hot-spots at ultra-narrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface enhanced Raman or Fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein we leverage a well-calibrated process based on self-assembly of block copolymer colloids on full-wafer level to produce high density plasmonic nanopillar arrays exhibiting large number (> 10^10 /cm^2) of uniform inter-pillar EM hot-spots. The approach allows convenient handles to systematically vary the inter-pillar gap distances down to sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances towards their leverage over inter-pillar hot-spots, and the resulting sensitivity in SERS based molecular assays. Comparing the detection of labelled proteins in surface-enhanced Raman and metal-enhanced Fluorescence configurations further reveal the relative advantage of Fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations is realized for both the small organic molecules and the proteins. The well-defined geometries delivered by nanofabrication approach is critical to arriving at realistic geometric models to establish meaningful correlation between structure, optical properties and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that take into account the analyte dimensions to drive ultra-high sensitivity in plasmon-enhanced spectroscopies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源