论文标题
天然科:对象探测器的自然和健壮的物理对抗示例
NaturalAE: Natural and Robust Physical Adversarial Examples for Object Detectors
论文作者
论文摘要
在本文中,我们提出了一种自然而坚固的物理对抗示例攻击方法,旨在在现实世界中定位对象探测器。产生的对抗性实例对各种物理限制具有鲁棒性,并且在视觉上看起来与原始图像相似,因此这些对抗性例子对人类是自然的,不会引起任何怀疑。首先,为了确保对抗性示例在实际条件下的鲁棒性,该提出的方法利用了不同的图像转换函数,以模拟对抗性示例生成的迭代优化期间的各种物理变化。其次,为了构建自然的对抗性示例,该提出的方法使用自适应掩码来限制附加扰动的区域和强度,并利用现实世界的扰动评分(RPS)使扰动与物理世界中的真实声音相似。与现有研究相比,我们产生的对抗性实例可以实现高成功率,而显着的扰动较少。实验结果表明,在各种室内和室外物理条件下,包括不同的距离,角度,照明和照相,产生的对抗性实例是可靠的。具体而言,在室内和室外产生的对抗示例的攻击成功率分别高达73.33%和82.22%。同时,提出的方法确保了生成的对抗示例的自然性,并且增加的扰动的大小比现有作品中的扰动小得多。此外,提出的物理对抗攻击方法可以从白色框模型转移到其他对象检测模型。
In this paper, we propose a natural and robust physical adversarial example attack method targeting object detectors under real-world conditions. The generated adversarial examples are robust to various physical constraints and visually look similar to the original images, thus these adversarial examples are natural to humans and will not cause any suspicions. First, to ensure the robustness of the adversarial examples in real-world conditions, the proposed method exploits different image transformation functions, to simulate various physical changes during the iterative optimization of the adversarial examples generation. Second, to construct natural adversarial examples, the proposed method uses an adaptive mask to constrain the area and intensities of the added perturbations, and utilizes the real-world perturbation score (RPS) to make the perturbations be similar to those real noises in physical world. Compared with existing studies, our generated adversarial examples can achieve a high success rate with less conspicuous perturbations. Experimental results demonstrate that, the generated adversarial examples are robust under various indoor and outdoor physical conditions, including different distances, angles, illuminations, and photographing. Specifically, the attack success rate of generated adversarial examples indoors and outdoors is high up to 73.33% and 82.22%, respectively. Meanwhile, the proposed method ensures the naturalness of the generated adversarial example, and the size of added perturbations is much smaller than the perturbations in the existing works. Further, the proposed physical adversarial attack method can be transferred from the white-box models to other object detection models.