论文标题

多任务MR成像与迭代老师强迫和重新加权深度学习

Multi-task MR Imaging with Iterative Teacher Forcing and Re-weighted Deep Learning

论文作者

Qi, Kehan, Gong, Yu, Liu, Xinfeng, Liu, Xin, Zheng, Hairong, Wang, Shanshan

论文摘要

由磁共振(MR)重建引起的噪声,伪影和信息丢失可能会损害下游应用的最终性能。在本文中,我们开发了一种重新加权的多任务深度学习方法,以从现有的大数据集中学习先验知识,然后利用它们来协助从不采样的K-Space数据中同时进行重建和细分。多任务深度学习框架配备了两个网络子模块,这些网络子模块由我们设计的迭代教师强迫方案(ITF)集成和培训,并在动态重新加权损失约束(DRLC)下进行。 ITF旨在通过将完全采样的数据注入训练过程来避免错误积累。提出了DRLC,以动态平衡重建和分割子模块的贡献,以共同提高多任务的精度。该方法已在两个开放数据集和一个在体内内部数据集上进行了评估,并与六种最新方法进行了比较。结果表明,所提出的方法具有同时且准确的MR重建和分割的令人鼓舞的能力。

Noises, artifacts, and loss of information caused by the magnetic resonance (MR) reconstruction may compromise the final performance of the downstream applications. In this paper, we develop a re-weighted multi-task deep learning method to learn prior knowledge from the existing big dataset and then utilize them to assist simultaneous MR reconstruction and segmentation from the under-sampled k-space data. The multi-task deep learning framework is equipped with two network sub-modules, which are integrated and trained by our designed iterative teacher forcing scheme (ITFS) under the dynamic re-weighted loss constraint (DRLC). The ITFS is designed to avoid error accumulation by injecting the fully-sampled data into the training process. The DRLC is proposed to dynamically balance the contributions from the reconstruction and segmentation sub-modules so as to co-prompt the multi-task accuracy. The proposed method has been evaluated on two open datasets and one in vivo in-house dataset and compared to six state-of-the-art methods. Results show that the proposed method possesses encouraging capabilities for simultaneous and accurate MR reconstruction and segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源